Preparation of N, N'-Disubstituted Piperazines from Bis(2-anilinoethyl) Phenylphosphonites

Oyo Mitsunobu,*, *1 Takashi Ohashi,** Motokazu Кікисні** and Teruaki Mukaiyama*

Laboratory of Organic Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo ** Technical Research Department, Bridgestone Tire Co., Ltd., Kodairashi, Tokyo

(Received October 12, 1966)

Preceding paper¹⁾ describes that bis(2-anilinoethyl) phenylphosphonite (I) is prepared by the reaction of 2, 3-diphenyl-1, 3, 2-oxazaphospholidine (II, R=C₆H₅) with an equimolar amount of 2-

*1 Present address: College of Science and Engigineering, Aoyama Gakuin University, Megurisawa-cho, Setagaya-ku, Tokyo.

1) O. Mitsunobu, T. Ohashi, M. Kikuchi and T.

Mukaiyama, This Bulletin, 39, 214 (1966).

anilinoethanol. A small amount of N, N'-diphenylpiperazine was always formed by the above reaction. The formation of the piperazine suggests that the phosphonite decomposes thermally into the piperazine. In this paper, the formation of N, N'-disubstituted piperazines by the thermal decomposition of various bis(2-aminoethyl) phenylphosphonites were investigated.

When bis(2-anilinoethyl) phenylphosphonite was

** The reaction was carried out in refluxing toluene.

TABLE 1. PREPARATION OF N, N'-DISUBSTITUTED PIPERAZINE

C.H.P.O.	HO-CH ₂						Product				
Z-2	$\frac{\mathrm{HN-CH}_2}{\mathrm{R'}}$	Temp.	Time	RN.	NR'	Yield	Mp °C or Bp °C/mmHg			Anal, %	
×	Ά,	ပ္	hr	R	R'	%			Ü	н	z
C_6H_5	C_6H_5	210	3	C ₆ H ₅	G_6H_5	*08	163—165 (THF)	E.	80.23 80.67	7.82	11.96
$p ext{-}\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4$	$p ext{-}\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4$	180	2	p-CH ₃ C ₆ H ₄	$p ext{-}\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4$	73	186—188 (toluene)	Ę,	81.33 81.16	8.30 8.29	10.52 10.51
p-CH ₃ OC ₆ H ₄	$p ext{-}\mathrm{CH}_3\mathrm{OC}_6\mathrm{H}_4$	180	-	$\rho\text{-CH}_3\mathrm{OC}_6\mathrm{H}_4$	$p ext{-} ext{CH}_3 ext{OC}_6 ext{H}_4$	82	242—244 (anisole)	$G_{\mathbf{C}}^{\mathbf{F}}$	72.72 72.45	7.66	9.65 9.39
p-ClC ₆ H ₄	$p ext{-} ext{CIC}_6 ext{H}_4$	180 - 200	1	$p ext{-} ext{ClC}_6 ext{H}_4$	$p ext{-} ext{ClC}_6 ext{H}_4$	57	238—240 (toluene)	Γ	62.69 62.55	5.32 5.25	9.06 9.12
C_6H_5	CH_3	180—190	3	C_6H_5	CH_3	25**	105—107/5	$\frac{F}{C}$	74.23 74.95	9.08 9.15	15.41 15.90
C_2H_5	C_2H_5	200	1	C_2H_5	$\mathrm{C_2H_5}$	43	80—83/35—40	${ m F}_{ m C}$	67.71 67.55	13.00 12.76	19.75
F=Found, C=C	F=Found, G=Calcd (); Solvent of recrystallization.	ent of recrystal	llization.	* 36% of phe	36% of phenylphosphinic acid was obtained.	was obta	*	of diphe	enylpipera	31% of diphenylpiperazine was obtained	tained.

Table 2. Preparation of 1, 3, 2-oxazaphospholidines

			i						
	Ħ					Pro	Product		
$\mathrm{RP}(\mathrm{NEt}_2)_2$	HOCH ₂ CH ₂ NR'	Temp.	Time	Z Z	RP(N)	Yield	Bp °C/mmHg (Mp °C)	Anal, N%	%N
R	R'	ပ္	hr		R'	%		Calcd	Found
C_6H_5	Н	150-155	_	C ₆ H ₅	H	61	115-118/4-5	8.38	8.62
C_6H_5	CH_3	127	2.5	C_6H_5	CH3	25	88 - 91/0.02	7.74	7.83
C_6H_5	C_2H_5	150 - 170	3	C_6H_5	C_2H_5	98	79 - 81/1 - 2	7.18	7.29
G_6H_5	$\mathrm{C}_{\mathrm{0}}\mathrm{H}_{\mathrm{5}}$	*	2.5	C_6H_5	C_6H_5	82	130 - 132/0.03 (75-76)	5.76	5.88
C_6H_5	$p ext{-} ext{CH}_3 ext{C}_6 ext{H}_4$	150-170	4	C_6H_5	$p ext{-} ext{CH}_3 ext{C}_6 ext{H}_4$	48	163 - 165/0.1 (62-64)	5.46	5.69
C_6H_5	$p ext{-} ext{CH}_3 ext{OC}_6 ext{H}_4$	150170	4	C_6H_5	$p ext{-} ext{CH}_3 ext{OG}_6 ext{H}_4$	91	158 - 162/0.05 (56 - 58)	5.13	5.15
G_6H_5	p-ClC ₆ H ₄	150—170	က	C_6H_5	$p ext{-} ext{ClC}_6 ext{H}_4$	74	154 - 162/0.08 (53 - 55)	5.04	5.03
C_2H_5O	C_6H_5	120	3	C_2H_5O	C_6H_5	84	88 - 91/0.02	6.64	6.79
* *	C_6H_5	*	5	C_2H_5O	C_6H_5	55	91 - 92/0.02	6.64	6.70

* The reaction was carried out in refluxing xylene. *** Ethyl N-phenyliminophosphite (C₂H₅O-P=NC₆H₅) was used.

heated at 200°C for 1 hr, N, N'-diphenylpiperazine was obtained in a 78% yield.

$$C_{6}H_{5}P(OCH_{2}CH_{2}NHC_{6}H_{5})_{2} \xrightarrow{200^{\circ}C}$$

$$I$$

$$C_{6}H_{5}N - NC_{6}H_{5} + \left[C_{6}H_{5}P + OH\right]$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

As shown in the previous paper, 1) bis(2-anilinoethyl) phenylphosphonite is formed by the reaction of 2, 3-diphenyl-1, 3, 2-oxazaphospholidine with 2-anilinoethanol. Thus the direct method for the preparation of piperazines from 1, 3, 2-oxazaphospholidines and 2-aminoethanols were attempted.

The reaction of equimolar amounts of 2, 3-diphenyl-1, 3, 2-oxazaphospholidine and 2-anilinoethanol at 210°C for 3 hr resulted in the formation of N, N'-diphenylpiperazine and phenyl phosphinic acid in 80% and 36% yields respectively (Eq. (2), $R = C_6H_5$).

$$C_{6}H_{5}P \left\langle \begin{matrix} O-CH \\ | \\ N-CH_{2} \end{matrix} + HOCH_{2}CH_{2}NHR \rightarrow \right.$$

$$\begin{matrix} R \\ II \end{matrix}$$

$$[C_{6}H_{5}P(OCH_{2}CH_{2}NHR)_{2}] \rightarrow 0$$

$$\begin{matrix} RN \\ N-R + C_{6}H_{5}P \end{matrix} \left\langle \begin{matrix} O \\ H \end{matrix} \right\rangle$$

$$O \\ OH \end{matrix} \qquad (2)$$

Similarly, various N, N'-disubstituted piperazines were prepared and the results are summarized in Table 1.

It must be noted that when 2, 3-diphenyl-1, 3, 2-oxazaphospholidine and 2-methylaminoethanol were heated at 190°C for 3 hr, an unsymmetrical piperazine, N-phenyl-N'-methylpiperazine was obtained in 25% yield along with N, N'-diphenylpiperazine.

The starting materials, 3-substituted 2-phenyl-1, 3, 2-oxazaphospholidines were synthesized by the reaction of bis(diethylamino) phenylphosphine (III) with the corresponding N-substituted 2-aminoethanol as shown in the following equation (Eq. (3)). The results are summarized in Table 2.

$$C_{\theta}H_{\delta}P \left\langle \begin{matrix} O \\ N \end{matrix} \right] + 2 Et_{2}NH$$
(3)

Experimental

Preparation of 2-Phenyl-3-p-methoxyphenyl-1,3,2-oxazaphospholidine. A mixture of bis(diethylamino) phenylphosphine (III, 5.04 g, 0.02 mol) and 2-p-anisidinoethanol (3.34 g, 0.02 mol) was heated at 150—170°C for 4 hr. The mixture was distilled to give 2-phenyl-3-p-methoxyphenyl-1, 3, 2-oxazaphospholidine (5.00 g, 91.3%, bp 174—178°C/0.1—0.15 mmHg) which was solidified on standing. Recrystallization from ether gave mp 41—44°C.

Found: N, 5.15%. Calcd for C₁₅H₁₆NO₂P: N, 5.13%.

Similarly, several 1, 3, 2-oxazaphospholidines were prepared. The results are summarized in Table 2.

Preparation of N, N'-Diphenylpiperazine. A mixture of 2, 3-diphenyl-1, 3, 2-oxazaphospholidine (2.43 g, 0.01 mol) and 2-anilinoethanol (1.37 g, 0.01 mol) was heated at 180°C for 3 hr. Benzene (10 ml) was added to the mixture and N, N'-diphenylpiperazine (1.5 g) was removed by filtration. Aqueous sodium hydroxide (5%) was added to the filtrate and the solution was concentrated to give N, N'-diphenylpiperazine (0.41 g). Total yield of N, N'-diphenylpiperazine was 80% (1.91 g), mp 160—163°C. To the aqueous layer, concentrated hydrochloric was added and the solution was concentrated to give phenylphosphinic acid (36%). Recrystallization from water gave mp 71—72°C.

Similarly, some N, N'-diarylpiperazine were obtained as shown in Table 1.

Preparation of N, N'-Diethylpiperazine. A mixture of 2-phenyl-3-ethyl-1, 3, 2-oxazaphospholidine (2.48 g, 0.0127 mol) and 2-ethylaminoethanol (1.14 g, 0.0127 mol) was heated at 200°C for 1 hr. Ether and aqueous sodium hydroxide were added to the mixture. The ether layer was dried and distilled to give N, N'-diethylpiperadine (0.78 g, 43%, bp 80—83°C/35—40 mmHg, n²5 1.4541. Found: C, 67.71; H, 13.00; N, 19.75%).

Preparation of N-Phenyl-N'-methylpiperazine. A mixture of 2, 3-diphenyl-1, 3, 2-oxazaphospholidine (4.6 g, 0.03 mol) and 2-methylaminoethanol (2.25 g, 0.03 mol) was heated at 180—190°C for 3 hr. Benzene (10 ml) was added to the mixture and N, N'-diphenylpiperazine (0.07 g, mp 160—163°C) was removed by filtration. Aqueous sodium hydroxide (1.2 g. NaOH in 10 ml of H₂O) was added to the filtrate. Benzene layer was dried and distilled to give N-phenyl-N'-methylpiperazine (1.31 g, 25%, bp 100—110°C/4—6 mmHg. Redistillation gave an analytical sample, bp 105—107°C/5 mmHg. Found: C, 74.23; H, 9.08; N, 15.41%). From the residue of the distillation, N, N'-diphenylpiperazine was obtained (0.16 g, mp 160—163°C).

The authres wish to thank the Bridgestone Tire Co., Ltd, for permission to publish this work; they wish also to acknowledge the helpful advice given by Mr. Yoshitake Kubota and late Mr. Koshiro Fujiwara.